
A Security Analysis of Version 2 of the Network
Time Protocol NTP: A Report to the Privacy and

Security Research Group

Matt Bishop

Technical Report PCS-TR91-154

A Security Analysis of the NTP Protocol

Matt Bishop

Department of Mathematics and Computer Science

Dartmouth College

Hanover, NH 03755

ABSTRACT

The Network Time Protocol is being used throughout the Internet to provide an ac-

curate time service. This paper examines the security requirements of such a ser-

vice, analyzes version 2 of the NTP protocol to determine how well it meets these

requirements, and suggests improvements where appropriate.

1. Introduction

The goal of a time distribution protocol is to deliver continuous, accurate time synchronized

with national standards even when leap seconds occur [10]. Such protocols establish a set of pri-

mary time reference sources which are directly synchronized with external sources. These may

communicate with secondary servers, which in turn may communicate with other (secondary)

servers designed to propagate time to hosts on a subnet; the servers propagate the time either by

initiating transmission of time messages or by responding to requests from clients seeking the time.

The goal of a time service is to allow a system to synchronize its clock with those of known,

accurate primary time servers. This means synchronizing time (so the clocks agree on the time of

day) and synchronizing frequency (so the clocks appear to tick at the same rate). However, the

propagation of time messages over a network is hindered by transmission delays, unreliable con-

nections, disparity of methods of clients obtaining the time, and heterogeneousness of computing

resources. These factors should not affect the synchronization of the clocks, so a time service must

provide accurate time even in the face of large (statistical) delays during propagation, as well as

being very redundant, so the loss of a single subnet or transmission path does not prevent other por-

tions of the network from obtaining the correct time. Further, the protocol must be flexible enough

to work with a variety of client/server interfaces, including having clients continuously poll for the

This report is a preliminary report on issues of security and integrity affecting the network time protocol NTP,
version 2, done for the Privacy and Security Research Group (a group under the Internet Research Steering Group
of the Internet Activities Board). It has not yet been reviewed by the PSRG and hence should be considered pre-
liminary. However, due to increased interest in the issues raised by this report, it is being made available to the
community at large.
This work was supported by grant NAG 2-628 from NASA Ames Research Center to Dartmouth College, and by
a Burke Award from Dartmouth College.

Page 1 of 22

time,or obtain it by remote procedure calls, as well as in broadcast, multicast, and point-to-point

transmission modes.

In what follows, we shall consider only attacks involving the transmission (or hinderance

of transmission) of time messages; we shall assume that the messages leave the source uncorrupt-

ed, and once they arrive at the target they will not be altered. We make this assumption for simplic-

ity; first, not knowing the operating systems under which these protocols can run, without this

restriction we would have to analyze all operating systems which might run the protocols. Second-

ly, as access to networks is usually easier to obtain than access to individual hosts, the focus of a

network time protocol's security should be on the network. Third, as no system is completely se-

cure, the analysis of any protocol which did not involve an assumption about the nature of the at-

tack being from a network would be rather vacuous.

Five types of attacks on a time service are possible. An attacker could cause a non-time

server to impersonate a time server (masquerade), an attacker could modify some (or all) time mes-

sages sent by a time server (modification), an attacker could resend a time server's time messages

(replay), an attacker could intercept a time server's time messages and delete them (denial of ser-

vice), and an attacker could delay the time messages by, for example, deliberately flooding the net-

work, thereby introducing large transmission delays (delay).

The goal of this report is to examine the security of version 2 of the NTP protocol [7] [8]

with respect to the five attacks described above, and when vulnerabilities are found we suggest

remedies. The next section describes version 2 of the NTP protocol (the current incarnation), and

the section after that analyzes the attacks in terms of that protocol. The final section suggests im-

provements to make the NTP protocol more resistent to attacks.

2. Network Time Protocol Version 2

The Network Time Protocol (or NTP) 1 is a protocol designed to meet the above require-

ments in a wide-area network. It designates several sites as primary time servers; these communi-

cate with secondary time servers over synchronization paths which are said to connect peers. The

secondary time servers also communicate with other secondary time servers; in addition, each such

node serves clients on a subnet. The stratum number is a measure of distance from a primary time

server, specifically the number of synchronization paths that must be transversed to get from the

primary time server to the secondary time server. Because network failures must not affect the

1. These definitions and descriptions are from [10], §1.2.

Page 2 of 22

(pdmary servers) top level stratum

A _..--.. level 2 stratum

level3sotum
Figure 1. The NTP hierarchy. The ellipses represent sets of cohorts, the solid lines syn-

chronization paths, and the dotted lines paths along which time information is exchanged.

A server in C can be synchronized by one in A but not by one in B. If the synchronization

path from the primary servers to server 1 of B were to be disrupted, then that server would

be synchronized by server 2 in B but not by server 2 in A (as it is in a different cohort). As

the shortest path between server 1 in B and the primary servers through its clock source is

of length 2, then server 1 of B would be at stratum 3.

availability of the time service, the synchronization paths are not fixed, but may be reconfigured as

needed.

Primary time servers are synchronized by an external system (such as radio or atomic

clocks) with up to 232-picosecond (2x10 "10 seconds) resolution 2. Secondary time servers are syn-

chronized by primary time servers or other secondary time servers with lower stratum numbers.

The arrangement is hierarchical, with members of a set (called cohorts) initially at stratum level i

serving some group at level i+ 1 (see Figure 1). Members of the group at i+ 1 may synchronize them-

selves with any time server in the set, but not with any server not in the set (even if it is at a lower

stratum). 3 Membership in a cohort is determined simply by the stratum number of the host and the

selection algorithm of the peer that can be synchronized by members of the cohort.

When a message arrives at an NTP time server, it either causes an association (instantiation

of the protocol machine) to be created, or causes an existing association to act; what happens de-

pends on the mode of the association. The two basic functions are to synchronize another host's

clock, or to be synchronized by another host's clock.

2.1. Association Modes 4

Three operating modes are designed for use on high-speed local area networks, although

they may be used on wide area networks as well. The first set allows non-server hosts to synchro-

2. [8]. §3.1.2.
3. [8],§2; [13],§3.
4. [7],§3.3; [8], §3.1.1.

Page 3 of 22

nize themselves to NTP servers. An association operating in client mode periodically sends mes-

sages to its peer;, an association operating in server mode, which is created when a message from

another association operating in client mode arrives, replies with the server's idea of the time, and

then terminates; and an association operating in broadcast mode sends periodic time messages.

The client association may resynchronize the host's local clock, but no association in broadcast or

server mode will ever reset its host's time.

The primary and secondary time servers rely on two other modes to synchronize them-

selves, with higher-level servers synchronizing lower-level ones. An association in symmetric ac-

tive mode periodically broadcasts messages intended to synchronize other hosts. When the

messages arrive at these peers, an association in symmetric passive mode is created. If the source

of the message is at a higher stratum than the current host, a reply is sent and the association ter-

minates. Otherwise, the source synchronizes the current host as indicated by the message; the cur-

rent host responds with a time message of its own. Normally, the servers at the highest strata will

run in symmetric active mode, with servers at lower strata in both symmetric active and passive

modes. Note that a host may acquire peers either through receipt of messages or through initializa-

tion data read at configuration.

In addition to synchronization messages, NTP allows several types of control messages 5

designed to handle exceptional conditions. These messages do not normally cause synchronization,

but instead communicate (or set) information related to the current association, or indicate excep-

tional events. They are designed for use when no other network management facilities (such as

SNMP [1]) are available, and these commands may be sent by other than NTP peers. Further, the

NTP specification does not require implementations to be able to process these control messages.

2.2. Selection of Source Peer and Smoothing of Data 6

NTP uses various algorithms to filter "bad" timestamps from "good," the discriminator in-

cluding (among other things) how much the newer timestamp is at variance with previous ones.

The first algorithm attempts to improve the accuracy of estimated clock offsets and

roundtrip delays by eliminating bad data. From each NTP message the roundtrip delay d and clock

offset c are computed (see Figure 2). The values computed from the last eight messages are retained

and constitute the sample. The first algorithm simply chooses from among these the one with the

5. These messages are described in [7], §9 (Appendix B).
6. The algorithms are described in detail in [7], §4, and are analyzed and evaluated in [8], §6 and [10], §2-_4.

Page 4 of 22

t/-3

Local Server

ti

w
ti-2

Remote Server

ti.1

clock offset c i = ((ti_ 2 - ti.3)+(ti.1 - ti))/2 and roundtrip delay d i = (t i - ti.3)+(ti. 1 - ti.2).

Figure 2. Computation of clock offset and roundtrip delay.

lowest delay and uses its associated offset as the estimated clock oft'set. It also computes an esti-

mate of the sample dispersion based on clock offsets in the sample

The second algorithm uses this estimate to determine which peer should be allowed to syn-

chronize the clock. It first sorts all possible clock sources by stratum number and then by dispersion

from the root of the synchronization subnet (that is, up to the primary server synchronizing the

node). The list is pruned using various sanity checks and other criteria described in [8]. The ele-

ments of this list then are scanned repeatedly, and during each scan the clock dispersion relative to

each peer is computed, and that peer with the highest dispersion is eliminated. This repeats until

there is only one element in the list; that is the required source.

2.3. Receive and Packet Procedures

Whenever a packet is received, either an error or a packet procedure is called. If the modes

of the host and the peer are incompatible (for example, both are symmetric passive), the error pro-

cedure is called, the packet discarded, and the association deleted (unless it is preconfigured) 7.

Otherwise, the packet procedure 8 checks that the packet is reasonable and if so, resets in-

ternal variables, adjusts the local clock if necessary, and possibly select a new peer to be used as

the clock source. It first checks that the packet was not transmitted at the same time as the last one

received from that peer (i.e., pkt.xrat does not match peer.org) to eliminate retransmitted packets,

and then checks that the last packet the peer received from the local host was indeed the last one

the local host sent to the peer (i.e.,vkt.org matches peer.xmt) to ensure messages axe not being re-

ceived out-of-order. If either condition fails a sanity check is set but processing continues. The as-

sociation updatesitself to reflect the newly-received packet (see Figure 3 for a list of the internal

variables altered) and the polling interval 9. It then checks that the peer clock is properly synchro-

7. The procedures called for each possible pair of host-peer modes is given in [7], Table 6.
8. This procedure is formally described in [7], §3.4.3.
9. The procedure to do this is described in [7], §3.4.8.

Page 5 of 22

association variable set to

peer.leap pkt.leap

peer.stratum pkt.stratum

peer.ppoll pkt.ppoll

peer.precision pkt.precision

peer.distance pkt.distance

peer.dispersion pkt.dispersion

peer.refid pkt.refid

peer.reftime pkt.reftime

peer.org pkt.xmt

peer.rec sys.clock

Figure 3.

meaning

leap second?

stratum number of peer

polling interval

precision of peer's clock

estimated delay from primary

estimated dispersion from primary
reference clock identifier

time peer last updated

when peer sent message

when peer's message received

Association variables set on receive.

nized and authenticated, and that the peer's stratum level is at least as high as that recorded in the

packet; if any of these conditions fall, the sanity check is set. Next, the association validates that

two-way communication with the peer exists (i.e.,okt.org andpkt.rec are not 0). If the sanity check

is set or two-way communication does not exist, the procedure exits. Otherwise, the packet proce-

dure estimates the round-trip delay and clock offset with respect to the peer, and on some local area

networks, a correction factor involving the field peer.precision may be applied. If appropriate, the

clock update procedure 10 is invoked to update the local clock. (Figure 4 summarizes this proce-

dure.)

Once the packet procedure is finished, the receive procedure resumes. If the peer is in client

10.

if (t/me packet transmitted = time last received packet transmitted) then

sanity := true;

if (time peer received last packet from host <> time last message sent to peer) then

sanity := true;

(* update association variables in Figure 3 *)

if (peer clock not synchronized) or (peer clock not updated for I day) then

sanity := true;

if (not authenticated correctly) then

sanity := true;

if (peer not preconfigured) _ind (packer's stratum > peer' s stratum) then

sanity := true;

if sanity then

(* discard message and exit *)

if (packet originate timestamp = 0) or (t/me last message received by peer = 0) then

(* exit; note sanity flag not set *)

(* compute delay, offset, corrections, update local clock *)

Figure 4. Summary of the packet procedure.

[7], §3.4.5.

Page 6 of 22

mode,or thelocal hostis in serveror broadcastmode,thepeermustbesentthe local time,soafter

thefrequencyof polling by thepeeris updated,a reply is transmittedandthereceiveprocedure

ends.Otherwise,if thesanitycheckis set,theerrorprocedureis invokedunlessthepeeris in sym-

metricactivemodeandthelocalhostin symmetricpassivemode.If theerrorprocedureis not in-

voked,a flag indicatingthepeercanbereachedis set.In anycasethepacketis discardedandthe

receiveprocedureterminates.

2.4. Transmit Procedure11

Associatedwith eachpeeris apeertimerwhich decrementsperiodically.Whenthat timer

is 0, anNTP messageis generatedandsentto thepeer.The transmittimestamp(pkt.xmt)is saved

tovalidatethereply.Next,if thepacketprocedurehasnotobtainedvalid roundtripdelayandclock

offsetmeasurementsfrom thepeerwith in the last two time-outintervals,it updatesa sampleset

of (roundtripdelay,clockoffset)pairswith (0,0) to skewtheestimateddispersion,andthendeter-

minesif a new timesourceshouldbeused.Thepeertimer is resetto theshorterof thepeer-host

polling interval (pkt.ppoll)andthehost-peerpolling interval (peer.ppoll),butnot to lessthan64or

morethan1024seconds.12Thisensuresthepolling frequencyvariesonly within aspecificinterval.

Finally,thehost-peerpolling interval is decreasedif theestimateddispersionis largerthan

0.5,13or increasedif it is smallerthan0.5,to balancetheneedfor low dispersionwith thatfor low

NTP-relatednetworktraffic.

2.5.Security Mechanisms

For reasonsdiscussedearlier,weshallconsideronly thoseissuesraisedby relying on the

information transmitted over the network. Each NTP message (also called packet) contains the in-

formation shown in Figure 5. Three NTP-provided mechanisms access these for security reasons.

2.5.1. Delay Compensation Mechanisms 14

The most basic mechanism is one to compensate for network delays; it is used to offset

problems from statistical irregularities or problems in network connectivity and congestion which

might be maliciously created or natural. The precise function used is detailed in [7]; the aspect rel-

11. [7], §3.4.1.

12. These bounds are the values of the configurable constants NTP.MINPOLL and NTP.MAXPOLL, respective-
ly; see [7], Table 5, and §3.4.1, §3.4.8.

13. The constant is the value of the configurable parameter PEER.THRESHOLD; see Table 5 in [7].
14. These are described briefly in §2.2.

Page 7 of 22

variable representing.., variables

pkLsrcadr peer's address pkt.precision

pkLsrcport peer's port pkt.distance

pkLdstadr local address pkt.dispersion

pkt.dstport local port pkt.refid

pkLleap leap indicator pkt.reftime

pkt.version version number pkt.org

pkLpmode mode of peer's association pkt.rec

pkt.stratum pkt.stratum pkt.xmit

pkt.ppoll polling interval

representing ...

precision of peer's clock

estimated delay

estimated dispersion
reference clock id

last clock update

when last msg sent

when last msg received

when last msg left peer

Figure5. List of NTP message (packet) fields.

evant to this discussion is that the algorithm calculates both the roundtrip delay and the clock offset

relative to the peer, and from these applies a statistical procedure to determine estimates used to

update the local clock.

2.5.2. Access Control Mechanism ls

This feature requires that the set of all hosts be partitioned into three subsets: those that are

trusted, those that are friendly, and all others. Trusted hosts are allowed to synchronize the local

clock; friendly hosts are sent NTP messages and timestamps as appropriate, but may not change

the local clock; and messages from hosts in the third subset are ignored. The set of trusted hosts is

either preconfigured (at initialization) or configured based upon a trusted ticket service such as Ker-

beros [17]. The peer address in the NTP packet (pkt.srcadr) is to be used as the address upon which

access control is based. The implementation of this feature is not specified, although two are sug-

gested (the first, treating all peers configured in symmetric or client modes as trusted and all others

as friendly; the second, masking the internet address and looking up the result and the peer mode

in a table to obtain the subset to which the peer belongs). This feature ned not be supported for an

implementation to conform to the NTP specification.

2.5.3. Authentication Mechanism 16

A third feature, allowed but not required by the specification, is integral to the packets, and

is designed to provide both origin authentication and packet integrity. A major requirement is that

the computation of the integrity check be predictable, since it must be done after timestamping, but

15. [7], §3.5. Note that this is not part of the NTP specification. The given methods are recommended ways of
implementing access control in the Internet; if another form is more suitable for the environment in which
NTP is being run, that form should be used.

16. The authentication mechanism is described in [7], §10 (Appendix C); key assignment is described in [9].

Page 8 of 22

if peer.config= 0 then

if authenticator in message data then

peer.authenable := 1
else

peer.authenable := 0;

if peer.authenable = 1 then begin

peer.authentic := 0;

if (authenticator in message data) then begin

peer.keyid := packet.keyid;

compute_mac(mac, peer.keyid, packet);

if peer.keyid <> 0 and mac = packet.check then

peer.authentic := 1;
end;

end;

(* if peer.authenable is O, authentication is not done;

(* otherwise if peer.authentic is O, the integrity of the

(* packet' s contents are suspect

,)
*)
,)

Figure 6. The authentication routine's checking algorithm.

the timestamping must reflect the time needed to compute the checksum. The authentication mech-

anism described in [7] meets these requirements, and is intended for use only until more general,

network-wide, authentication and integrity facilities become available. It uses a cryptographically-

based message integrity check; all algorithms and keys are distributed by a mechanism other than

NTP, and the keys and algorithms are referenced within the packet by indices.

When a packet is transmitted in authenticated mode, the entire NTP packet except for the

authenticator and additional information is checksummed using the active peer's key (if available)

or the default key 0 (if not). Note that if the association is symmetric active, client, or broadcast,

the key used is that of the local host, whereas if the association is symmetric passive or server, the

key used is that of the remote host (or the default key).

When a packet is received, the authentication routine is invoked. If the message contains

no authentication information, the authentication and integrity check fails; further, if the peer is not

preconfigured (at initialization), authentication for that peer is disabled. In either case the routine

exits. However, if the message does contain authentication information, the index number of the

peer's key is reset to that in the packet, and the checksum is recomputed and compared to the trans-

mitted checksum. If the key is not the default one, and the checksums match, the authentication

and integrity check succeeds; otherwise, it fails. This is summarized in Figure 6.

The authentication and integrity mechanism in [7] uses the Data Encryption Standard

Page 9 of 22

basedDEA-1 algorithm(thatis,DESin CBCmode)[2] to compute the checksum. The checksum

is 64 bits long, and the key index is 32 bits; these 96 bits are appended to the original NTP packet,

and their presence is indicated by the length of the packet. (The choice of algorithm is not part of

the NTP specification of the authentication and integrity mechanism.)

We should note that for control messages, if the received message is authenticated, the reply

is too. If the received message's checksum is correct, the reply is authenticated using the same key;

if not, the reply is authenticated using the default key.

3. Analysis of NTP Security Mechanisms

Version 2 of NTP provides two basic security mechanisms: an access control mechanism

and an authentication mechanism. Because they are intended to hinder attacks, we discuss them

before turning to the specific attacks that may be launched against an NTP host.

3.1. Access Control Mechanism

The access control mechanism conditions access on the interact address in the source field

of the packet. If the attacker can generate or modify an NTP packet, the attacker can choose a

source address that allows synchronization of the victim. Hence the access control mechanism is

redundant from the point of view of network security; the protection it provides is against a com-

promised time source, which can simply be denied access (or at least, the ability to synchronize the

host).

The problem with the recommended access control mechanism is that, in the absense of an

integrity checking mechanism, it relies completely on the unauthenticated source address. As an

additional measure, access control can be conditioned on a routing basis; that is, a list of all the

intermediate nodes the message passes through is built using the IP record route option [3] (which

causes intermediate nodes to insert their address into the IP datagram) and determine access based

on that list. This allows an NTP packet from a trusted source to be rejected if it passed through un-

trusted hosts. Of course, as the added routing information is not checksummed cryptographically,

it can be altered in transit without detection, just as the source address can; however, if the final

part of the route over which the packet travels is trusted, this mechanism may indicate that the

packet entered from an untrusted part of the network. Access control may then be based on that

information.

Page 10 of 22

3.2. Authentication Mechanism

First, it should be noted that the authentication mechanism is also an integrity mechanism

because it guards against the altering of messages while in transit. The authentication provided is

simply that of only two parties (the peer and the host) sharing a common key. In particular, if any

n hosts have the same key, then it will not be possible to determine which of them sent the message.

Secondly, note that the authenticator is excluded from the integrity checking. 17 This means

that the key index associated with the generated cryptographic checksum can be altered without

detection. In general, this will cause the checksum to be invalidated and the packet to fail to au-

thenticate correctly; however, if a less robust cryptosystem were used to generate checksums, the

authentication mechanism might not prevent undetectable modification of NTP messages.

No key distribution mechanism is defined.

The integrity checking algorithm used is subject to various cryptanalytic attacks which

have been discussed in the literature [4] because the check is only 64 bits long; however, as these

attacks are probabilistic in nature, changing the keys periodically will defeat them.

Although we are assuming no system is penetrated, it is worth noting that the keys are used

on a per-host basis, not a per-path basis, so compromise of one host's key can lead to compromise

of all the hosts it synchronizes.

We should note that the use of a default key is not a weakness, contrary to what it would

seem. In Figure 6, notice that if the checksum is computed using the default key, the flag indicating

whether or not the packet is authentic is set to 0 (meaning the packet's integrity or origin are sus-

pect). Hence anything authenticated with the default key will be treated as bogus by the other end.

In what follows we shall assume the authentication mechanism is not compromised.

4. Analysis of NTP with Respect to Attacks

This section describes the attacks that might be launched against an NTP server or client,

and how NTP handles them.

4.1. Masquerade

Goal. To persuade a timekeeper that the attacker is a peer authorized to synchronize the timekeeper.

Note this includes NTP client processes as well as secondary servers.

17. See [71, §10.2.

Page 11 of 22

Attack: Send packets to the victim with source address of the time server to be imitated. As both

source and destination Internet addresses and ports are matched to find the correct peer, an equiv-

alent attack would simply change the destination address within the NTP message.

Effects: If the host being impersonated is known to the victim and allowed to synchronize the vic-

tim, in the absence of access control and authentication, the masquerade may be ignored (but not

detected) by the sample processing and selection operations. However, if the attacker alters the

timestamps to change the clock offsets and roundtrip delays gradually, those algorithms will pro-

vide no protection and the victim's clock will drift from that of the time source.

If the host being impersonated is not known to the victim, and the default is to allow non-

preconfigured peers to become the clock source, sending messages in such a way that the victim

receives at least 8 messages uninterrupted by any other time source could compromise the time

server; since the clock filtering mechanisms use the last 8 messages as the sample upon which out-

liers are discarded, the attacker needs to ensure it controls the elements of the sample. An even sim-

pler method would be to send messages claiming a very low stratum number, as the selection

algorithm would tend to make such a host the synchronization source. For this reason, no non-pre-

configured peer should be allowed to become the clock source.

Note that although the timestamps are precise to 80 nanoseconds (and hence it is unlikely

the attacker can predict the value of the next time stamp), if the attacker can see the transmitted

time of any packet sent from the host to the peer (pkt.xmt) and transmit a (bogus) packet to the host

before the peer does so, the masquerade will not be detected; but if the host replies, and the reply

arrives after the true peer sends another message, the true peer's message will be rejected as bogus

because the pkt.org field in that packet will not match the time the host sent its last message to the

peer. In this way, the attacker could successfully spoof the peer.

Countermeasures: The use of authentication would preclude this attack. The use of access control

does not; however, it does allow one to "turn off" permission for a suspect server to synchronize

the local clock. If access control is used, all non-preconfigured peers should be considered "friend-

ly" at best (using the language of §3.1.)

4.2. NTP Message Modification

Goal. To alter a message from one timekeeper to another to cause the recipient to incorrectly re-

synchronize itself, or to disable an active association.

Attack: Alter packets sent to the victim.

Page 12 of 22

Effects: By examining the packet procedure it is clear that several variables related to the associa-

tion may be changed a packet altered in transit before the packet alteration is acted upon (see Figure

4). How would such alteration affect the integrity of the recipient's clock?

First, if any of the sanity checks discussed in §2.2 fail, the packet is discarded, the associ-

ation deactivated (if the message is from a peer that has not been preconfigured), and the clock is

not updated. If all the sanity checks are passed, then the clock may be reset (if the strata numbers

are correctly related and any access control mechanism indicates the peer is trusted). If not, no

harm is done. If the clock is reset, then the fields that the attacker can alter affecting the new time

arepkt.org, pkt.rec, pkt.xmt, andpkt.precision. However, for the sanity checks to pass, pkt.org must

match the time the last packet was transmitted, which is stored in the receiving host, so altering

pkt.org will cause the packet to be dropped. Hence only pkt.rec, pkt.xrnt, and pkt.precision can suc-

cessfully be altered in an attack to change the local system's time.

Altering pkt.precision may result in changes to the roundtrip delay for the packet on sys-

tems involving high-speed local area networks. In these cases, a"fudge factor" 8 is computed using

c + 2 pkt.precision where c is a system-dependent constant; this accounts for possible discrepancies

between the host and peer clocks 18. Then 8 is added to the roundtrip delay. Clearly, by modifying

this field appropriately the roundtrip delay can be made (almost arbitrarily) large. It can also be

made quite small by choosing a value so that _5is approximately 0; this has as an advantage that the

clock source selection algorithm bases its choice of peer in part upon _i.19

We should note that the roundtrip delay and clock offset are used to compute both an ad-

justment to the frequency with which messages are sent to the peer on the local host's initiative

(that is, not in response to a peer's message) and to determine which of the set of possible clock

sources should be used as the source. Both these computations involve a statistical (weighted) av-

erage of the peer clock offsets as well as estimates of the roundwip delays and clock offsets. Hence

altering pkt.rec, pkt.xmt, and pkt.precision can also affect the choice of clock source and the fre-

quency of initiating contact with other time servers.

If the purpose of the attack is something other than incorrectly altering the victim's local

clock, a variety of other mechanisms may be used. We consider these by considering the other

fields of the transmitted packet:

pkt.leap As these bits are not used by NTP, modifying them does nothing.

18. 17],p. 26.

19. The detailed description of the algorithm is in [7], §3.4.3 and _4.2.

Page 13 of 22

victim's mode

symmetric passive
client

server

broadcast

altered mode

symmetric passive, server, broadcast
client

symmetric passive, server, broadcast

symmetric passive, server, broadcast

pkt.mode

pkt.stratum

pkt.ppoll

pkt.distance

pkt.dispersion

Figure 7. Mode combinations deactivating non-preconfigured associations

pkt.version If this is changed to the version number of an earlier version of NTP, the

packet will be discarded unless specific exception has been made. This

would allow a denial-of-service attack, and possibly other types of attacks

if the exceptional actions permitted.

Depending on how the mode is changed and the mode of the victim, this can

cause the disconnection of an association (see Figure 7); it cannot change a

packet from one that does not cause a clock update into one that does cause

a clock update. If the source of the packet has a pre-configured association

with the victim, however, the packet is discarded without the association be-

ing broken.

If the (original) value is greater than the victim's stratum number, and the

altered value is less, then the altered value will replace the original value in

the victim's table of peer associations; this peer then becomes eligible to be

added to the list of clock sources. Note that access control mechanisms may

prevent this if the peer whose packets are being modified is not trusted.

This affects the frequency of the polling of the peer. Associated with each

host is a polling interval; this interval is copied into the packet field pkt.ppoll

before it is sent. At the other end, the time to initiate a message is reset to

2smaller of peer's polling interval and host's polling interval, unless that is larger or

smaller than two preset constants (as described in §2.3.) Hence one can af-

fect the polling interval, but only within specified limits.

Altering this field affects the estimated roundtrip delay (dispersion) that the

victim perceives from the primary source and so can effect the choice of

clock source as well as the frequency of polling that clock.

Altering this field affects the estimated dispersion that the victim perceives

from the primary source.

Page 14 of 22

pkt.refut Altering this field affects the time reference source that the victim perceives

the primary source to be relying on.

pkt.reftime This is used to detect non-updated peer clocks. If it is over one day different

than the pkt.xmt field, the packet will be discarded and (if the association is

not preconfigured) it will be discontinued. In any case, the state variables as-

sociated with the association are updated to those of the packet.

Countermeasures: To prevent message modification from escaping detection, the authentication

mechanism must be used. To prevent message modification from affecting the local host time even

in the absence of detection is not possible as the distance and dispersion fields can be modified;

however, the stratum value should be used only if all sanity checks are passed (this is true for non-

preconfigured associations, but not true for preconfigured ones) and access controls indicate the

connection is trusted (not simply the host)

4.3. Replay

Goal. To intercept and resend NTP messages from one timekeeper to another to cause the recipient

to incorrectly resynchronize itself, or to disable an active association.

Attack: Record messages sent at one time and resend them later.

Effects: First, note that the sanity checks in Figure 4 will detect replay attacks if the victim sends

any message to the originator of the packet, because one of the sanity checks compares peer.xmt

(the time the victim sent a last message to the peer) with pkt.org (the time the peer last received a

message from the victim). Hence for a replay to be effective, either the packet being replayed must

arrive at the victim before it sends the peer anything, or the packet must be altered to contain this

time. As [9] points out, the latter essentially implies a passive wiretapping to monitor packets from

the victim to the peer (given the resolution of the timestamp and the unlikelihood of the attacker's

predicting it exactly).

In the former case, it is not possible to flood the victim in order to force all elements of the

sample to reflect the replayed time, because the first step of the packet procedure determines if this

packet is the same as the one received previously from the peer. If so, it is discarded. Hence the

replayed data will mingle with valid (new) data, and the clock filtering and selection algorithms

will cause that data to be ignored if the other packets from the peer arc accurate. This suggests one

possible attack: record two packets from the peer (being careful that nothing is sent from the victim

to the peer in that interval), and then rapidly replay the packets, alternating them. This will make

Page 15 of 22

four sampleelementsbethefirst packet and the other four the second. However, as the packets are

received, the clock offsets and delays computed from the timestamps will become greater and

greater, resulting in the peer's estimated dispersion and delay increasing; the clock selection algo-

rithm will simply drop the peer as a valid source (if there are multiple clock sources, the peer will

be an outlier;, if the peer is the only source, it will at some point have too large an estimated delay).

Hence replay will either have a negligable effect, or isolate the victim (equivalent to a denial-of-

service attack).

Other problems exist. If the delay is greater than the polling interval or no other message

has been sent from the peer to the target, the sanity checks in the receive procedure will detect the

replay; but as noted in the previous section, this can still cause various association parameters to

be reset. In particular, if the synchronization paths have been reconfigured so the peer's stratum

number has dropped (and hence the target's stratum number has dropped), the peer could become

a source.

Otherwise the effects are the same as for message modification.

A major effect of a replay attack will be to reset the recipient's clock backwards; as the mes-

sage is valid but for an earlier time, if the replay is not caught and the victim resynchronizes its

clock to the (replayed) time in the packet, the local time will be reset to an earlier time.

Countermeasures: Decreasing the bounds of the polling interval will decrease the window of vul-

nerability. As an alternative, change the first sanity check in the packet procedure to reject any mes-

sage with a transmit timestamp older than the last one received, and create a special resynchronize

message to be sent when a clock is changed backwards. Then the window of vulnerability exists

only when a resynchronization packet is sent.

If authentication is used, a less suitable alternative is to employ route-based access control

as described in §3.1. If a packet comes over an untrusted portion of the network and contains a time

that is earlier than the current time, it is rejected as a possible replay attempt. It should be noted

that therecorded IP muting information is not cryptographically checksummed, so it is not reliable;

but if the final portion of the route is over a trusted portion of the network, then it may be possible

to determine that the packet entered that part of the network from an untrusted part.

4.4. Delay

Goal. To delay NTP messages from one timekeeper to another to cause the recipient to incorrectly

resynchronize itself, or to disable an active association.

Page 16 of 22

Attack: Artificially increase (by various nefarious means) the roundtrip delay of an association.

Effects: This increases the estimate of delay to the peer;, if more than 8 packets are so delayed (so

the estimate of the delay is more than 8 seconds), the peer whose packets are being delayed cannot

be a source. This may result in the target having no source, resulting in a denial of service attack.

Countermeasures: The only way to prevent this is redundancy of clock sources, which NTP cur-

rently provides.

4.5. Denial of Service

Goal. To prevent NTP messages from any one timekeeper from arriving at the target of the attack,

thereby preventing the target from obtaining the correct time.

Attack: Prevent packets from clock sources from reaching an NTP host.

Effects: This will force the NTP server to run under its own clock, and possibly get far out of syn-

chronization with the rest of the Internet (see Table 7 in [7]) for a list of standard time sources and

their drift from the correct time).

Countermeasures: The only way to prevent this is redundancy of clock sources.

4.6. Combined Attacks

A combination of the above actions can also prove quite effective during an attack on an

NTP server, especially any other attack combined with a denial of service or a delay attack; such

combinations attempt to eliminate or hinder communications between a server and members of its

cohort not under the attacker's control. For example, denying service to a secondary server from

all but one source, and delaying packets from that source, can cause the victim to drift. So can re-

playing an alternating pair of packets to a server with but one source; the server's time will oscillate

between the two values, and the server will report incorrect times. Such attacks can be best dealt

with by dealing with each of the component attacks separately.

5. Suggested Improvements

There are two ways for security mechanisms in NTP to evolve. The first is external to NTP,

the second internal. External mechanisms are provided by the network protocols upon which NTP

is built; internal protocols assume no underlying security mechanism and implement all such con-

siderations within the NTP protocol. Currently, the latter is the model used; so let us begin there.

Page 17 of 22

5.1. Recommendations for the Internal Mechanisms

Authentication should always be used, 20 and the computation of the interity checksum

should include the key index. 21 To be more effective, keys should be issued on a per-path, not a

per-host, basis. This has been noted in [9], in which it is also said that "the complexity of assigning

a distinct key to every peer path used by a server would be pretty fierce "However, such a key

assignment system adds a fire wall in that if the key for one peer path is compromised, no other

peer paths are affected. Further, the different keys do not affect the time needed for authentication,

but merely the time needed to administrate the key distribution. As key distribution is out of the

scope of the NTP protocol, we merely note that a certificate-based mechanism as used in [5] could

be used to distribute keys on a per-peer path basis. 22 There would be a considerable lag involved

in validating the keys, but as noted in [7], "the nature of NTP is quite tolerant to such disruptions

[as inconsistent key information while re-keying is in progress], so no particular provisions are

needed to deal with them. ''23

The record route option of IP should be used when available, and access control should be

based on the routes recorded. Of course this does not prevent altering the route while the datagram

is in transit or at an intermediate node, but it is another detail an attacker will have to worry about. 24

The peer association variables should be changed only after the packet has passed all sanity

checks. Otherwise there is a chance the packet is bogus or corrupt, and in either case the informa-

tion in it is not reliable and should not be used. 25

The legal values of the field pkt.precision should be constrained more tightly than is cur-

rently done. As of version 2, this field may assume values between -127 and 127 inclusive; it is

unlikely that any clock will have precision as coarse as 2127 seconds (roughly 5×1031 years) or as

fine as 2 "127 seconds (roughly 6×10 -39 seconds) in the immediate future. Note that this applies only

20. See §3.2, fourth paragraph, and §3.4 of this report.
21. See §3.2, second paragraph.

22. We also note that the protocol used to distribute keys must not rely on NTP for determining the time during
which those keys will be valid, because then if the relevant NTP server were tricked into incorrectly setting
its clock, all keys would have invalid periods attached, enabling the attacker to force NTP servers to use cur-
rent keys (thereby disabling periodic key changes, or the changing of compromised keys). The Kerberos pro-
tocol suffers from this problem, as key validity (or the lifetime of the relevant ticket) is determined by a
timestamp obtained from the Kerberos server which, presumably, would be set using an NTP server [17]. The

certificate-based mechanism mentioned above may have its interval of validity set either automatically or
manually, and in any case will be examined by the human responsible for the NTP server when it is issued.
Hence it does not suffer from this problem.

23. [7], p. 56.

24. See §3.1, second paragraph of this report.
25. See §3.4 of this report.

Page 18 of 22

to systems involving high-speed LANS; pkt.precision is used nowhere else. 26

Currently, eight data points are sampled to estimate the dispersion of the clock offset and

the roundtrip delay. This enables attackers to flood the victim with bogus packets. If the sample

size can be increased to require more data points, this danger can be diminished. Unfortunately,

more than eight points can diminish the stability of the local clock and so diminish the effectiveness

of the algorithm [11]. Perhaps allowing some maximum number of packets per polling interval-

would have the desired effect without affecting the statistics adversely. 27

The danger of replay arises from the possibility of a system's clock being set backwards by

a packet from another host. The best way to prevent this is to require a special packet be sent when

the clock is to be moved back, and provide a nonce to ensure the packet cannot be replayed. (Note

it is not sufficient to reject any packet with a timestamp no newer than the last one received, be-

cause a clock may run fast and need to be set back; it must then propagate its change to those for

which it is the source.)

Finally, redundancy must be ensured; in particular, no server should have as its source only

one other server. NTP does this to a large extent already, but it is imperative that the sets at the var-

ious strata contain more than one element. This will limit the effectiveness of delay and denial-of-

service attacks. 28

5.2. Applicability of External Mechanisms

NTP has attempted to provide its own security, with all the resulting problems of any secu-

rity system. An alternative is to use a security protocol for the underlying transmission mechanism

and ignore security considerations at the higher (NTP) level.

There are two problems with such a design. The first is that none of the major security-ori-

ented protocols allow broadcast, because broadcasting unforgeable, authenticated packets would

imply the use of a public-key checksumming scheme, and no such scheme runs quickly enough to

be used in that context (the best-studied, RSA, runs at 1150 bits/second on a Sun 3/60 [6]; given

that the checksum should be on the order of 512 bits, this would mean that at most only 2 packets

could be processed per second). 29 The second is that few such protocols are in widespread use.

26. See §3.4,paragraph3,ofthisreport.

27. See §3.5ofthisreport.

28. See§3.6-§3.7ofthisreport.

29. NotethatthisisnotabarriertoNTP,sincepollingisdonenomore frequentlythanon theorderofaminute
[8],§3.3.

Page 19 of 22

Thelackof broadcast is not serious between primary and secondary, or secondary and sec-

ondary, servers, as these are not expected to use broadcast mode; however, for a secondary server

providing time service to other hosts on a LAN, the broadcast mode is used. 30 One alternative

would simply be to eliminate that mode of operation, and require workstations on such a LAN to

query the secondary server directly (the address being configured at boot time). A second would

be to allow broadcast but require confirmation by the resynchronizing workstation having an NTP

association that enters client mode when it uses the broadcast NTP message to reset the local clock.

Unfortunately, the availability of such network-level and transport-level protocols is more

serious. The current UDP protocol [12] provide for no security beyond that available with IP. The

IP options include two relevant here: security and strict source routing.

Strict source routing forces packets to be routed through specific intermediate hosts. If

those hosts and the links connecting them are trusted, then the NTP packets can also be trusted.

However, in a wide-area environment, such assurances are rare; and the source route is specified

as a set of fields within the IP datagram itself. Those fields have no associated manipulation detec-

tion code. Hence if any link is vulnerable to an active wiretapper, the source route can be altered

and the packet made to go along any route.

The IP security option [14] is designed for the protection of information falling under the

U.S. classification scheme (i.e., Top Secret, Secret, Confidential, and Unclassified) and is not ap-

propriate for use here.

So, at this point we must conclude that IP does not provide sufficient underlying security

to enable its use as an external security mechanism even if broadcasting is eliminated or designated

"not trustworthy."

Other protocols not currently in widespread use may prove more suitable. For example, the

SDNS Security Protocols SP/3 [15] and SP/4 [16] provide integrity and authentication; this would

require NTP to detect only replay or delaying attacks. But these are fundamental to NTP's nature

(one due to the connectionless protocol used, and the other due to the use of statistical algorithms)

and so most likely cannot be prevented by the underlying protocol.

6. Conclusion

The NTP protocol is a useful, well-designed protocol designed to be robust under a variety

30. [7], §3.3, p. 21.

Page 20 of 22

of conditions.Like all other protocols, it has security weaknesses, some of which are inherent in

the goals of the protocol and some of which are a result of the limits of the mechanisms used to

improve security. In this report we have highlighted specific areas where attacks designed to thwart

the goals of NTP are possible, and have suggested improvements where appropriate.

The recommendations made here are made from the security analyst's point of view;

whether or not they can be implemented without adversely impacting the goals of the protocol is

another matter. It may be necessary to experiment, for example to determine how much increasing

the sample size would affect the accuracy of the statistical algorithms used in NTP. Further, there

are some attacks against which the only defense is redundancy, and that may not be possible in all

circumstances.

Acknowledgments: I would like to thank Dave Mills, the author of NTP, for his extensive help in

guiding me through the intricacies of the algorithm, his unfailing good humor, and his frankness

about security matters; he also graciously reviewed several drafts of this report. As with so many

other papers, this is not simply the work of the author alone; I would like to thank the members of

the Privacy and Security Research Group, especially David Balenson, Russ Housley, Steve Kent,

John Linn, Dan Nessett, Richard Parker, Ken Rossen, Miles Smid, and Dave Solo, for their helpful

discussions of attacks on NTP; Dan Nessett, for his careful critiquing of this document; and also

Ralph Merkle, for his comments during the discussion of NTP and security.

References

[1] J. Case, M. Fedor, M. Schoffstall, and C. Davin, Simple Network Management Protocol

(SNMP), RFC 1157 (May 1990).

[2] Federal Information Processing Standards Publication 81, DES Modes of Operation (Dec.

1980).

[3] Information Sciences Institute, Internet Protocol, RFC 791 (Sep. 1981).

[4] B. Kalisld, Jr., R. Rivest, and A. Sherman, "Is the Data Encryption Standard a Group? (Re-

suits of Cycling Experiments on DES)," Journal of Cryptography 1(1) pp. 3-36 (1988).

S. Kent and J. Linn, Privacy Enhancement for lnternet Electronic Mail: Part H -- Certifi-

cate-Based Key Management, RFC- 1114 (Aug. 1989).

D. Laurichesse, Mise En O_uvre Optimisee du Chiffre RSA, Technical Report LAAS-90052,

Laboratoire d'Automatique et d'Analyse des Systemes (Mar. 1990)

[51

[6]

Page 21 of 22

[7] D. Mills, Network Time Protocol (Version 2) Specification and Implementation, RFC 1119

(Sep. 1989).

[8] D. Mills, Internet Time Synchronization: the Network Time Protocol, RFC 1129 (Oct.

1989).

[9] D. Mills, personal communication (Feb. 1989).

[10] D. Mills, "On the Accuracy and Stability of Clocks Synchronized by the Network "Nme

Protocol in the Intemet System," ACM Computer Communications Review (Jan. 1990).

[11] D. Mills, personal communication (July 1990).

[12] J. Postel, User Datagram Protocol, RFC 768 (Aug. 1980).

[13] Privacy and Security Research Group, "Meeting Minutes" (Jan. 17-19, 1990)

[14] M. St. Johns, Draft Revised IP Security Option, RFC 1038 (Jan. 1988).

[15] SDNS Protocol and Signaling Working Group, Security Protocol 3 (SP3), Revision 1.5,

SDN.301 (May 1989).

[16] SDNS Protocol and Signaling Working Group, Security Protocol 4 (SP4), Revision 1.3,

SDN.401 (May 1989).

[17] J. Steiner, C. Neuman, and J. Schiller, "Kerberos: An Authentication Service for Open Net-

work Systems," USENIX Proceedings, pp. 191-202 (Winter 1988).

Page 22 of 22

